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The propagation of few-cycle optical pulses (FCPs) in nonlinear media can be described by means of a model of modified 
Korteweg-de Vries-sine Gordon (mKdV-sG) type. This model has in some special situations the advantage of being 
'integrable', which allows us to study the interactions between FCPs. In addition, it is very general: we show that all other 
non-slowly varying envelope approximation  models of FCP propagation which can be found in the literature, especially the 
so-called 'short pulse equation', are in fact approximations or special cases of the mKdV-sG model. Finally, an analogous 
model valid in the case of a quadratic nonlinearity will be discussed. 
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1. Introduction 
 
Few-cycle optical pulses, since their first experimental 

realization in 1999 are the matter of intensive research 
activity (see the comprehensive review [1]). From the 
fundamental point of view, many phenomena involving 
ultra-short optical pulses (with very broad spectra) are 
studied in detail at present, such as the supercontinuum 
generation. A new and interesting physics appears in the 
study of these unique phenomena. 
It is worthy to mention that the  slowly varying envelope 
approximation (SVEA) is no longer valid under these 
conditions. Although generalizations have been proposed 
and have proven their efficiency [2], a completely 
different approach to the study of few-cycle pulses, which 
completely abandons the SVEA is desirable. 

We showed, for the first time to our knowledge, that 
by using the reductive perturbation method (or multiscale 
expansion) applied to the Maxwell-Bloch equations, 
universal equations such as the modified Korteweg-de 
Vries (mKdV) or sine-Gordon (sG) ones could account for 
the propagation of few cycle solitons in a transparent Kerr 
medium [3]-[7]. 

These earlier studies were then generalized to a 
system consisting of two atomic transitions, one below and 
one above the range of  propagated wavelengths. As a 
result, a model of mKdV-sG-type equations was put 
forward [8]-[10]. In certain cases this nonlinear dynamical 
system is completely integrable by means of the Inverse 
Scattering Transform (IST) method. It admits stable 
solutions of 'breather' type, which also give a good account 
of few cycle soliton propagation. Integrability allowed us 
to investigate the interaction of solitons and it was found 
that no phase matching is required [11]. The propagation 
of few-cycle pulses in a quadratic medium has also been 
described by either a Korteweg-de Vries (KdV) or a 
Kadomtsev-Petviashvili (KP) equation, in (1+1) or (2+1) 

dimensions respectively,  which evidenced either  the 
stability of a plane wavefront, for a normal dispersion, or 
the formation of a localized spatiotemporal half-cycle 
soliton, for an anomalous dispersion [12]-[13]. The present 
paper briefly summarizes  these new results. 

 
 
2. The most general SVEA model  
 
The mKdV-sG equation is: 

 
( ) ( ) 0.sin 3

3
21 =Ec+Ec+Ec+E tttt

t
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As discussed above, it can be derived from Maxwell-

Bloch equations, and describes FCP soliton propagation in 
a Kerr medium. It reduces to mKdV equation if 01 =c , 

and to sG equation if 032 =c=c . The two latter 
equations are completely integrable by means of the IST, 
and Eq. (1) is also completely integrable if 23 2c=c  
[14]. It admits breather solutions, which describe FCP 
solitons (see Fig. 1.) 
Other  non-SVEA models have been proposed to describe 
FCP soliton propagation. Among them is the   so-called 
Short-Pulse Equation (SPE) [15]: 
 

( )ttzt E+E=E 3

6
1

.    (2)  

 
The SPE is completely integrable [16], and accounts 

for FCP soliton propagation. It is easily shown that the 
SPE can be derived from  mKdV-sG [17]: let us first 
perform a small amplitude approximation, so that the sine 
term in Eq. (1) reduces to ∫ Ec t

1 , then the mKdV-type 
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dispersion is neglected: 03 =c . A linear change of 
variables allows to fix the values of the remaining 
coefficients to 11 −=c , 6/12 −=c , and derivation with 

respect to t  yields exactly the SPE equation (2). 
 

 

 
 
 

Fig. 1. A FCP soliton described by the breather solution 
of the mKdV-sG equation (1). Blue: the analytical 

profile, red: its exact envelope. 
 

 
If we use the same small amplitude approximation, 

but do not neglect the mKdV-type term, we obtain after 
rescaling so that μ=c −3  and 121 =c=c  the 
alternative model equation 

 
( ) 03 =E+EE+E ttttttzt μ− .    (3)  

 
Eq. (3) was first prosposed to model FCP soliton 

propagation in Ref. [18] and it has shown FCP pulse 
compression [19-20]. Hence we see that all non SVEA 
models which have been already proposed to model FCP 
propagation are approximations of the generic mKdV-sG 
equation (1). 

 
 
3. Cubic FCP solitons  
 
Let us first consider the defocusing mKdV equation. 

There are indeed two different mKdV equations: 
 

02 =u+uσu+u ttttz       (4)  
 
with 1±=σ . For 1+=σ  Eq. (4) is of focusing type, 
while for 1−=σ  it is of defocusing type. An example of 
evolution of a FCP according to the defocusing mKdV 
equation is shown in Fig. 2. It is seen that the dispersion is 
accentuated by the nonlinear effect. 

The mKdV-sG equation with a defocusing mKdV part 
supports solitons in spite of this. This can be demonstrated 
as follows: For high frequencies (closer to SVEA), the 

mKdV-sG  equation can be approximately mapped to sG 
equation  [17]. Then the sG breather allows us to construct 
an approximate soliton, which can be used as input in a 
numerical resolution of mKdV-sG equation. It evolves 
with little deformation, as is shown in Fig. 3 in the case of 
vanishing mKdV dispersion. 

 
 

 
 

Fig. 2. The evolution of a FCP according to focusing 
(top) or defocusing (bottom) mKdV equation. The linear 
evolution  is  shown,  in  order  to   put   in   evidence  the  
                                nonlinear dispersion. 

 
 

 
 
Fig. 3. Evolution of a FCP soliton according to the 
mKdV-sG equation with defocusing mKdV nonlinearity 
and vanishing mKdV dispersion. The input is built from 
the sG  breather,  according  to an approximate mapping  
             of sG equation to mKdV-sG equation. 

 
 

For really defocusing mKdV dispersion, pulse 
compression may occur, as shown in Fig. 4. The input 
used is this computation is the soliton of the nonlinear 
Schrödinger equation which corresponds to the SVEA 
limit of mKdV-sG equation. It is clearly seen that SVEA is 
not valid. 
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Fig. 4. Pulse compression according to the mKdV-sG 
model with defocusing mKdV part. 

 
 

 
 

 
Fig. 5. Interaction of two FCPs. See the text for 

explanation of the figure. 
 
 

Let us now turn to FCP soliton interactions. In the 
integrable case, the 4-soliton solution to mKdV-sG 
equation [21] gives the 2-breather solution. We can 
compute the envelope of the FCPs during the interaction 
[5]. Fig. 5 presents the profile of the two FCPs long after 
interaction. The envelopes at this time are plotted, and also 
the envelopes 'before interaction', or more exactly, the 
envelope of each pulse at the time where the figure is 
drawn, assuming that they were propagating alone. A shift 
in location can be seen in Fig. 5; it has been computed 
explicitly. The rightmost envelopes have not the right 
amplitudes: this is the consequence of a phase shift which 
arises during the interaction, and allows to compute it. 

 
 
4. Quadratic FCP soliton 
 
Starting from either a classical model of elastically 

bound electron or a quantum two level model, in which a 

quadratic nonlinearity has been introduced, the reductive 
perturbation method allows us to derive a KdV model: 

  ( )23 EB+EA=E ττζ ∂∂∂ ,    (5)  
 

in which the dispersion coefficient is 
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The nonlinear coefficient is  
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Fig. 6. Formation of a KdV soliton from a FCP. a) Initial 
carrier-envelope phase  0=Φ : a single soliton is 
formed.    b)  2/π=Φ :   two    solitons   with   different  
        amplitudes. c) π=Φ : two identical solitons. 

 
 

From both the resolution of KdV equation by the IST 
and numerical analysis, it is found that a quadratic FCP 
soliton can be formed from a FCP input. The soliton is 
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exactly half cycle, with no oscillating tail. In addition, it 
has a  determined polarity. However, a large part of energy 
is dispersed, and soliton formation strongly depends on 
initial carrier-envelope phase Φ , see Fig. 6. 

In (2+1) dimensions, KdV equation becomes the 
Kadomtsev-Petviashvili (KP) equation: KP I or KP II. For 
a normal dispersion, it is the so-called KP II equation, 
which admits stable line solitons. This corresponds to a 
nonlinear recovery of the initial wavefront, hence the 
spatial coherence of the wave is improved by the nonlinear 
effect (see Fig. 7). 

 
 

 
 

Fig. 7. FCP in quadratic media with normal dispersion: 
Recovery of a perturbed wavefront according to the KP 

II equation. Left: input, right: after propagation. 
 
 
 

For an anomalous dispersion, the equation is the so-
called  KP I one, which admits stable localized lump 
solutions [22-23]. The analytical profile of the lumps is 
shown on Fig. 8. Numerical computation shows that lumps 
form spontaneously from transverse irregularities. 

 
 

Fig. 8. The two-dimensional FCP soliton in quadratic 
media with anomalous dispersion, as given by the 

analytical theory. 
 
 
5. Conclusions 
 
We developed a theory of optical FCP soliton 

propagation beyond the commonly used SVEA for both 
Kerr and quadratic nonlinear media. In this work we have 
summarized recent results of this theory, emphasizing the 
generality and interest of the generic mKdV-sG model in 
the cubic (Kerr) case.  

Interactions of Kerr FCP solitons have been described, 
and quadratic FCP soliton propagation has been also 
discussed. In both cases, no phase matching is required, 
which makes a strong contrast with the longer pulses 
described by the common SVEA theory. 
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